0%

BMS-BOCF analyzing

finite ordinals (\(0\) ~ \(\mathrm{FTO} = \omega\))

BMS BOCF normal notation, NN
\(\emptyset\) \(0\) \(0\)
\(()\) \(\psi(0)\) \(1\)
\(()()\) \(\psi(0)2\) \(2\)
\(()()()\) \(\psi(0)3\) \(3\)
\(()(1)\) \(\psi(\psi(0))\) \(\mathrm{FTO} = \omega\)

one-column BMS (\(\omega\) ~ \(\mathrm{SCO} = \varepsilon_0\))

\(\omega\) ~ \(\omega^2\)

BMS BOCF NN
\(()(1)\) \(\psi(\psi(0))\) \(\omega\)
\(()(1)()\) \(\psi(\psi(0))+\psi(0)\) \(\omega+1\)
\(()(1)()()\) \(\psi(\psi(0))+\psi(0)2\) \(\omega+2\)
\(()(1)()(1)\) \(\psi(\psi(0))2\) \(\omega 2\)
\(()(1)()(1)()\) \(\psi(\psi(0))2+\psi(0)\) \(\omega 2+1\)
\(()(1)()(1)()(1)\) \(\psi(\psi(0))3\) \(\omega 3\)
\(()(1)(1)\) \(\psi(\psi(0)2)\) \(\omega^2\)

\(\omega^2\) ~ \(\omega^\omega\)

BMS BOCF NN
\(()(1)(1)\) \(\psi(\psi(0)2)\) \(\omega^2\)
\(()(1)(1)()\) \(\psi(\psi(0)2)+\psi(0)\) \(\omega^2+1\)
\(()(1)(1)()(1)\) \(\psi(\psi(0)2)+\psi(\psi(0))\) \(\omega^2+\omega\)
\(()(1)(1)()(1)()(1)\) \(\psi(\psi(0)2)+\psi(\psi(0))2\) \(\omega^2+\omega 2\)
\(()(1)(1)()(1)(1)\) \(\psi(\psi(0)2)2\) \(\omega^2 2\)
\(()(1)(1)()(1)(1)()(1)(1)\) \(\psi(\psi(0)2)3\) \(\omega^2 3\)
\(()(1)(1)(1)\) \(\psi(\psi(0)3)\) \(\omega^3\)
\(()(1)(1)(1)()\) \(\psi(\psi(0)3)+\psi(0)\) \(\omega^3+1\)
\(()(1)(1)(1)()(1)\) \(\psi(\psi(0)3)+\psi(\psi(0))\) \(\omega^3+\omega\)
\(()(1)(1)(1)()(1)(1)\) \(\psi(\psi(0)3)+\psi(\psi(0)2)\) \(\omega^3+\omega^2\)
\(()(1)(1)(1)()(1)(1)(1)\) \(\psi(\psi(0)3)2\) \(\omega^3 2\)
\(()(1)(1)(1)(1)\) \(\psi(\psi(0)4)\) \(\omega^4\)
\(()(1)(2)\) \(\psi(\psi(\psi(0)))\) \(\omega^\omega\)

\(\omega^\omega\) ~ \(\omega^{\omega^2}\)

Using \(1 = \psi(0)\) in BOCF.

BMS BOCF NN
\(()(1)(2)\) \(\psi(\psi(1))\) \(\omega^\omega\)
\(()(1)(2)()\) \(\psi(\psi(1))+1\) \(\omega^\omega+1\)
\(()(1)(2)()(1)\) \(\psi(\psi(1))+\psi(1)\) \(\omega^\omega+\omega\)
\(()(1)(2)()(1)(1)\) \(\psi(\psi(1))+\psi(2)\) \(\omega^\omega+\omega^2\)
\(()(1)(2)()(1)(2)\) \(\psi(\psi(1))2\) \(\omega^\omega 2\)
\(()(1)(2)(1)\) \(\psi(\psi(1)+1)\) \(\omega^{\omega+1}\)
\(()(1)(2)(1)()(1)(2)\) \(\psi(\psi(1)+1)+\psi(\psi(1))\) \(\omega^{\omega+1}+\omega^\omega\)
\(()(1)(2)(1)()(1)(2)(1)\) \(\psi(\psi(1)+1)2\) \(\omega^{\omega+1} 2\)
\(()(1)(2)(1)(1)\) \(\psi(\psi(1)+2)\) \(\omega^{\omega+2}\)
\(()(1)(2)(1)(2)\) \(\psi(\psi(1)2)\) \(\omega^{\omega 2}\)
\(()(1)(2)(1)(2)()(1)(2)(1)(2)\) \(\psi(\psi(1)2)2\) \(\omega^{\omega 2} 2\)
\(()(1)(2)(1)(2)(1)\) \(\psi(\psi(1)2+1)\) \(\omega^{\omega 2+1}\)
\(()(1)(2)(1)(2)(1)(1)\) \(\psi(\psi(1)2+2)\) \(\omega^{\omega 2+2}\)
\(()(1)(2)(1)(2)(1)(2)\) \(\psi(\psi(1)3)\) \(\omega^{\omega 3}\)
\(()(1)(2)(2)\) \(\psi(\psi(2))\) \(\omega^{\omega^2}\)

\(\omega^{\omega^2}\) ~ \(\mathrm{SCO} = \varepsilon_0\)

Using \(\omega= \psi(1)\) in BOCF.

BMS BOCF NN
\(()(1)(2)(2)\) \(\psi(\psi(2))\) \(\omega^{\omega^2}\)
\(()(1)(2)(2)(1)\) \(\psi(\psi(2)+1)\) \(\omega^{\omega^2+1}\)
\(()(1)(2)(2)(1)(2)\) \(\psi(\psi(2)+\omega)\) \(\omega^{\omega^2+\omega}\)
\(()(1)(2)(2)(1)(2)(1)(2)\) \(\psi(\psi(2)+\omega 2)\) \(\omega^{\omega^2+\omega 2}\)
\(()(1)(2)(2)(1)(2)(2)\) \(\psi(\psi(2)+\psi(2))\) \(\omega^{\omega^2 2}\)
\(()(1)(2)(2)(2)\) \(\psi(\psi(3))\) \(\omega^{\omega^3}\)
\(()(1)(2)(3)\) \(\psi(\psi(\omega))\) \(\omega^{\omega^\omega}\)
\(()(1)(2)(3)(1)\) \(\psi(\psi(\omega)+1)\) \(\omega^{\omega^\omega+1}\)
\(()(1)(2)(3)(1)(2)\) \(\psi(\psi(\omega)+\omega)\) \(\omega^{\omega^\omega+\omega}\)
\(()(1)(2)(3)(1)(2)(3)\) \(\psi(\psi(\omega)2)\) \(\omega^{\omega^{\omega 2}}\)
\(()(1)(2)(3)(4)\) \(\psi(\psi(\psi(\omega)))\) \(\omega^{\omega^{\omega^\omega}}\)
\(()(1,1)\) \(\psi(\psi_1(0))\) \(\mathrm{SCO} = \varepsilon_0\)

two-column BMS (\(\varepsilon_0\) ~ \(\mathrm{BO} = \psi(\Omega_\omega)\))

\(\varepsilon_0\) ~ \(\mathrm{CO} = \zeta_0\)

\(\varepsilon_0\) ~ \(\varepsilon_1\)

Using \(\forall \alpha< \varepsilon_0, \omega^\alpha= \psi(\alpha)\) in BOCF.

BMS BOCF NN
\(()(1,1)\) \(\psi(\psi_1(0))\) \(\varepsilon_0\)
\(()(1,1)()(1,1)\) \(\psi(\psi_1(0))2\) \(\varepsilon_0 2\)
\(()(1,1)(1)\) \(\psi(\psi_1(0)+1)\) \(\omega^{\varepsilon_0+1}\)
\(()(1,1)(1)(1)\) \(\psi(\psi_1(0)+2)\) \(\omega^{\varepsilon_0+2}\)
\(()(1,1)(1)(2)\) \(\psi(\psi_1(0)+\omega)\) \(\omega^{\varepsilon_0+\omega}\)
\(()(1,1)(1)(2)(2)\) \(\psi(\psi_1(0)+\omega^2)\) \(\omega^{\varepsilon_0+\omega^2}\)
\(()(1,1)(1)(2)(3)\) \(\psi(\psi_1(0)+\omega^3)\) \(\omega^{\varepsilon_0+\omega^3}\)
\(()(1,1)(1)(2,1)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)))\) \(\omega^{\varepsilon_0 2}\)
\(()(1,1)(1)(2,1)(1)(2,1)\) \(\psi(\psi_1(0)+\psi(\psi_1(0))2)\) \(\omega^{\varepsilon_0 3}\)
\(()(1,1)(1)(2,1)(2)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+1))\) \(\omega^{\omega^{\varepsilon_0+1}}\)
\(()(1,1)(1)(2,1)(2)(1)(2,1)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+1)+\psi(\psi_1(0)))\) \(\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0}\)
\(()(1,1)(1)(2,1)(2)(1)(2,1)(1)(2,1)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+1)+\psi(\psi_1(0))2)\) \(\omega^{\omega^{\varepsilon_0+1}+\varepsilon_0 2}\)
\(()(1,1)(1)(2,1)(2)(1)(2,1)(2)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+1)2)\) \(\omega^{\omega^{\varepsilon_0+1} 2}\)
\(()(1,1)(1)(2,1)(2)(2)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+2))\) \(\omega^{\omega^{\varepsilon_0+2}}\)
\(()(1,1)(1)(2,1)(2)(3)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+\omega))\) \(\omega^{\omega^{\varepsilon_0+\omega}}\)
\(()(1,1)(1)(2,1)(2)(3,1)\) \(\psi(\psi_1(0)+\psi(\psi_1(0)+\psi(\psi_1(0))))\) \(\omega^{\omega^{\varepsilon_0 2}}\)
\(()(1,1)(1,1)\) \(\psi(\psi_1(0)2)\) \(\varepsilon_1\)

\(\varepsilon_1\) ~ \(\varepsilon_{\varepsilon_0}\)

BMS BOCF NN
\(()(1,1)(1,1)\) \(\psi(\psi_1(0)2)\) \(\varepsilon_1\)
\(()(1,1)(1,1)(1)\) \(\psi(\psi_1(0)2+1)\) \(\omega^{\varepsilon_1+1}\)
\(()(1,1)(1,1)(1)(2,1)\) \(\psi(\psi_1(0)2+\psi(\psi_1(0)))\) \(\omega^{\varepsilon_1+\varepsilon_0}\)
\(()(1,1)(1,1)(1)(2,1)(2,1)\) \(\psi(\psi_1(0)2+\psi(\psi_1(0)2))\) \(\omega^{\varepsilon_1 2}\)
\(()(1,1)(1,1)(1)(2,1)(2,1)(2)(3,1)(3,1)\) \(\psi(\psi_1(0)2+\psi(\psi_1(0)2+\psi(\psi_1(0)2)))\) \(\omega^{\omega^{\varepsilon_1 2}}\)
\(()(1,1)(1,1)(1,1)\) \(\psi(\psi_1(0)3)\) \(\varepsilon_2\)
\(()(1,1)(2)\) \(\psi(\psi_1(1))\) \(\varepsilon_\omega\)
\(()(1,1)(2)(1)(2,1)(3)\) \(\psi(\psi_1(1)+\psi(\psi_1(1)))\) \(\omega^{\varepsilon_\omega 2}\)
\(()(1,1)(2)(1,1)\) \(\psi(\psi_1(1)+\psi_1(0))\) \(\varepsilon_{\omega+1}\)
\(()(1,1)(2)(1,1)(1,1)\) \(\psi(\psi_1(1)+\psi_1(0)2)\) \(\varepsilon_{\omega+2}\)
\(()(1,1)(2)(1,1)(2)\) \(\psi(\psi_1(1)2)\) \(\varepsilon_{\omega 2}\)
\(()(1,1)(2)(2)\) \(\psi(\psi_1(2))\) \(\varepsilon_{\omega^2}\)
\(()(1,1)(2)(3)\) \(\psi(\psi_1(\omega))\) \(\varepsilon_{\omega^\omega}\)
\(()(1,1)(2)(3)(4)\) \(\psi(\psi_1(\omega^\omega))\) \(\varepsilon_{\omega^{\omega^\omega}}\)
\(()(1,1)(2)(3,1)\) \(\psi(\psi_1(\psi(\psi_1(0))))\) \(\varepsilon_{\varepsilon_0}\)

\(\varepsilon_{\varepsilon_0}\) ~ \(\mathrm{CO} = \zeta_0\)

BMS BOCF NN
\(()(1,1)(2)(3,1)\) \(\psi(\psi_1(\psi(\psi_1(0))))\) \(\varepsilon_{\varepsilon_0}\)
\(()(1,1)(2)(1)(2,1)(3)\) \(\psi(\psi_1(1)+\psi(\psi_1(1)))\) \(\omega^{\varepsilon_\omega 2}\)
\(()(1,1)(2)(1,1)\) \(\psi(\psi_1(1)+\psi_1(0))\) \(\varepsilon_{\omega+1}\)
\(()(1,1)(2)(1,1)(1,1)\) \(\psi(\psi_1(1)+\psi_1(0)2)\) \(\varepsilon_{\omega+2}\)
\(()(1,1)(2)(1,1)(2)\) \(\psi(\psi_1(1)2)\) \(\varepsilon_{\omega 2}\)
\(()(1,1)(2)(2)\) \(\psi(\psi_1(2))\) \(\varepsilon_{\omega^2}\)
\(()(1,1)(2)(3)\) \(\psi(\psi_1(\omega))\) \(\varepsilon_{\omega^\omega}\)
\(()(1,1)(2)(3)(4)\) \(\psi(\psi_1(\omega^\omega))\) \(\varepsilon_{\omega^{\omega^\omega}}\)
\(()(1,1)(2)(3,1)\) \(\psi(\psi_1(\psi(\psi_1(0))))\) \(\varepsilon_{\varepsilon_0}\)
\(()(1,1)(2)(3,1)(1,1)\) \(\psi(\psi_1(\psi(\psi_1(0)))+\psi_1(0))\) \(\varepsilon_{\varepsilon_0+1}\)
\(()(1,1)(2)(3,1)(1,1)(2)(3,1)\) \(\psi(\psi_1(\psi(\psi_1(0)))2)\) \(\varepsilon_{\varepsilon_0 2}\)
\(()(1,1)(2)(3,1)(2)\) \(\psi(\psi_1(\psi(\psi_1(0))+1))\) \(\varepsilon_{\omega^{\varepsilon_0+1}}\)
\(()(1,1)(2)(3,1)(2)(1,1)(2)(3,1)(2)\) \(\psi(\psi_1(\psi(\psi_1(0))+1)2)\) \(\varepsilon_{\omega^{\varepsilon_0+1}2}\)
\(()(1,1)(2)(3,1)(2)(2)\) \(\psi(\psi_1(\psi(\psi_1(0))+2))\) \(\varepsilon_{\omega^{\varepsilon_0+2}}\)
\(()(1,1)(2)(3,1)(2)(3)\) \(\psi(\psi_1(\psi(\psi_1(0))+\omega))\) \(\varepsilon_{\omega^{\varepsilon_0+\omega}}\)
\(()(1,1)(2)(3,1)(2)(3,1)\) \(\psi(\psi_1(\psi(\psi_1(0))2)\) \(\varepsilon_{\omega^{\varepsilon_0 2}}\)
\(()(1,1)(2)(3,1)(3)\) \(\psi(\psi_1(\psi(\psi_1(0)+1))\) \(\varepsilon_{\omega^{\omega^{\varepsilon_0+1}}}\)
\(()(1,1)(2)(3,1)(3)(4)\) \(\psi(\psi_1(\psi(\psi_1(0)+\omega))\) \(\varepsilon_{\omega^{\omega^{\varepsilon_0+\omega}}}\)
\(()(1,1)(2)(3,1)(3)(4,1)\) \(\psi(\psi_1(\psi(\psi_1(0)+\psi(\psi_1(0))))\) \(\varepsilon_{\omega^{\omega^{\varepsilon_0 2}}}\)
\(()(1,1)(2)(3,1)(3,1)\) \(\psi(\psi_1(\psi(\psi_1(0)2))\) \(\varepsilon_{\varepsilon_1}\)
\(()(1,1)(2)(3,1)(4)\) \(\psi(\psi_1(\psi(\psi_1(1)))\) \(\varepsilon_{\varepsilon_\omega}\)
\(()(1,1)(2)(3,1)(4)(5,1)\) \(\psi(\psi_1(\psi(\psi_1(\psi(\psi_1(0)))))\) \(\varepsilon_{\varepsilon_{\varepsilon_0}}\)
\(()(1,1)(2,1)\) \(\psi(\psi_1(\psi_1(0)))\) \(\mathrm{CO} = \zeta_0\)

\(\zeta_0\) ~ \(\mathrm{FSO} = \Gamma_0 = \varphi(1,0,0)\)

\(\zeta_0\) ~ \(\mathrm{HCO} = \varphi(\omega,0)\)

Using \(\forall \alpha< \psi_1(\psi_2(0)) = \varepsilon_{\Omega+1}, \omega^{\Omega+\alpha} = \psi_1(\alpha)\) in BOCF.

BMS BOCF NN
\(()(1,1)(2,1)\) \(\psi(\omega^{\Omega 2})\) \(\zeta_0\)
\(()(1,1)(2,1)(1)\) \(\psi(\omega^{\Omega 2}+1)\) \(\omega^{\zeta_0+1}\)
\(()(1,1)(2,1)(1)(2,1)\) \(\psi(\omega^{\Omega 2}+\psi(\Omega))\) \(\omega^{\zeta_0+\varepsilon_0}\)
\(()(1,1)(2,1)(1)(2,1)(3,1)\) \(\psi(\omega^{\Omega 2}+\psi(\omega^{\Omega 2}))\) \(\omega^{\zeta_0 2}\)
\(()(1,1)(2,1)(1,1)\) \(\psi(\omega^{\Omega 2}+\Omega)\) \(\varepsilon_{\zeta_0+1}\)
\(()(1,1)(2,1)(1,1)(2)\) \(\psi(\omega^{\Omega 2}+\omega^{\Omega+1}))\) \(\varepsilon_{\zeta_0+\omega}\)
\(()(1,1)(2,1)(1,1)(2)(3,1)(4,1)\) \(\psi(\omega^{\Omega 2}+\omega^{\Omega+\psi(\omega^{\Omega 2})})\) \(\varepsilon_{\zeta_0 2}\)
\(()(1,1)(2,1)(1,1)(2)(3,1)(4,1)(3,1)\) \(\psi(\omega^{\Omega 2}+\omega^{\Omega+\psi(\omega^{\Omega 2}+\Omega)})\) \(\varepsilon_{\varepsilon_{\zeta_0+1}}\)
\(()(1,1)(2,1)(1,1)(2,1)\) \(\psi(\omega^{\Omega 2}2)\) \(\zeta_1\)
\(()(1,1)(2,1)(1,1)(2,1)(1,1)\\(2)(3,1)(4,1)(3,1)(4,1)\) \(\psi(\omega^{\Omega 2}2+\psi(\omega^{\Omega 2}))\) \(\varepsilon_{\zeta_1 2}\)
\(()(1,1)(2,1)(1,1)(2,1)(1,1)(2,1)\) \(\psi(\omega^{\Omega 2}3)\) \(\zeta_2\)
\(()(1,1)(2,1)(2)\) \(\psi(\omega^{\Omega 2+1})\) \(\zeta_\omega\)
\(()(1,1)(2,1)(2)(1,1)(2,1)\) \(\psi(\omega^{\Omega 2+1}+\omega^{\Omega 2})\) \(\zeta_{\omega+1}\)
\(()(1,1)(2,1)(2)(1,1)(2,1)(2)\) \(\psi(\omega^{\Omega 2+1}2)\) \(\zeta_{\omega 2}\)
\(()(1,1)(2,1)(2)(2)\) \(\psi(\omega^{\Omega 2+2})\) \(\zeta_{\omega^2}\)
\(()(1,1)(2,1)(2)(3)\) \(\psi(\omega^{\Omega 2+\omega})\) \(\zeta_{\omega^\omega}\)
\(()(1,1)(2,1)(2)(3,1)\) \(\psi(\omega^{\Omega 2+\psi(\Omega)})\) \(\zeta_{\varepsilon_0}\)
\(()(1,1)(2,1)(2)(3,1)(4,1)\) \(\psi(\omega^{\Omega 2+\psi(\omega^{\Omega 2})})\) \(\zeta_{\zeta_0}\)
\(()(1,1)(2,1)(2,1)\) \(\psi(\omega^{\Omega 3})\) \(\eta_0\)
\(()(1,1)(2,1)(2,1)(1,1)\) \(\psi(\omega^{\Omega 3}+\Omega)\) \(\varepsilon_{\eta_0+1}\)
\(()(1,1)(2,1)(2,1)(1,1)(2,1)\) \(\psi(\omega^{\Omega 3}+\omega^{\Omega 2})\) \(\zeta_{\eta_0+1}\)
\(()(1,1)(2,1)(2,1)(1,1)(2,1)(2,1)\) \(\psi(\omega^{\Omega 3}2)\) \(\eta_1\)
\(()(1,1)(2,1)(2,1)(2)\) \(\psi(\omega^{\Omega 3+1})\) \(\eta_\omega\)
\(()(1,1)(2,1)(2,1)(2)(3,1)(4,1)(4,1)\) \(\psi(\omega^{\Omega 3+\psi(\omega^{\Omega 3})})\) \(\eta_{\eta_0}\)
\(()(1,1)(2,1)(2,1)(2,1)\) \(\psi(\omega^{\Omega 4})\) \(\varphi(4,0)\)
\(()(1,1)(2,1)(3)\) \(\psi(\omega^{\omega^{\Omega+1}})\) \(\mathrm{HCO} = \varphi(\omega,0)\)

\(\varphi(\omega,0)\) ~ \(\mathrm{FSO} = \Gamma_0 = \varphi(1,0,0)\)

BMS BOCF NN
\(()(1,1)(2,1)(3)\) \(\psi(\omega^{\omega^{\Omega+1}})\) \(\varphi(\omega,0)\)
\(()(1,1)(2,1)(3)(1,1)\) \(\psi(\omega^{\omega^{\Omega+1}}+\Omega)\) \(\varepsilon_{\varphi(\omega,0)+1}\)
\(()(1,1)(2,1)(3)(1,1)(2,1)\) \(\psi(\omega^{\omega^{\Omega+1}}+\omega^{\Omega 2})\) \(\zeta_{\varphi(\omega,0)+1}\)
\(()(1,1)(2,1)(3)(1,1)(2,1)(2,1)\) \(\psi(\omega^{\omega^{\Omega+1}}+\omega^{\Omega 3})\) \(\eta_{\varphi(\omega,0)+1}\)
\(()(1,1)(2,1)(3)(1,1)(2,1)(3)\) \(\psi(\omega^{\omega^{\Omega+1}}2)\) \(\varphi(\omega,1)\)
\(()(1,1)(2,1)(3)(2)\) \(\psi(\omega^{\omega^{\Omega+1}+1})\) \(\varphi(\omega,\omega)\)
\(()(1,1)(2,1)(3)(2)(3,1)\) \(\psi(\omega^{\omega^{\Omega+1}+\psi(\Omega)})\) \(\varphi(\omega,\varepsilon_0)\)
\(()(1,1)(2,1)(3)(2)(3,1)(4,1)\) \(\psi(\omega^{\omega^{\Omega+1}+\psi(\omega^{\Omega 2})})\) \(\varphi(\omega,\zeta_0)\)
\(()(1,1)(2,1)(3)(2)(3,1)(4,1)(5)\) \(\psi(\omega^{\omega^{\Omega+1}+\psi(\omega^{\omega^{\Omega+1}})})\) \(\varphi(\omega,\varphi(\omega,0))\)
\(()(1,1)(2,1)(3)(2,1)\) \(\psi(\omega^{\omega^{\Omega+1}+\Omega})\) \(\varphi(\omega+1,0)\)
\(()(1,1)(2,1)(3)(2,1)(1,1)(2,1)(3)(2,1)\) \(\psi(\omega^{\omega^{\Omega+1}+\Omega}2)\) \(\varphi(\omega+1,1)\)
\(()(1,1)(2,1)(3)(2,1)(2)\) \(\psi(\omega^{\omega^{\Omega+1}+\Omega+1})\) \(\varphi(\omega+1,\omega)\)
\(()(1,1)(2,1)(3)(2,1)(2)(3,1)(4,1)(5)(4,1)\) \(\psi(\omega^{\omega^{\Omega+1}+\Omega+\psi(\omega^{\omega^{\Omega+1}+\Omega})})\) \(\varphi(\omega+1,\varphi(\omega+1,0))\)
\(()(1,1)(2,1)(3)(2,1)(2,1)\) \(\psi(\omega^{\omega^{\Omega+1}+\Omega 2})\) \(\varphi(\omega+2,0)\)
\(()(1,1)(2,1)(3)(2,1)(3)\) \(\psi(\omega^{\omega^{\Omega+1}2})\) \(\varphi(\omega 2,0)\)
\(()(1,1)(2,1)(3)(3)\) \(\psi(\omega^{\omega^{\Omega+2}})\) \(\varphi(\omega^2,0)\)
\(()(1,1)(2,1)(3)(4)\) \(\psi(\omega^{\omega^{\Omega+\omega}})\) \(\varphi(\omega^\omega,0)\)
\(()(1,1)(2,1)(3)(4,1)\) \(\psi(\omega^{\omega^{\Omega+\psi(\Omega)}})\) \(\varphi(\varepsilon_0,0)\)
\(()(1,1)(2,1)(3)(4,1)(5,1)\) \(\psi(\omega^{\omega^{\Omega+\psi(\omega^{\Omega 2})}})\) \(\varphi(\zeta_0,0)\)
\(()(1,1)(2,1)(3)(4,1)(5,1)(6)\) \(\psi(\omega^{\omega^{\Omega+\psi(\omega^{\omega^{\Omega+1}})}})\) \(\varphi(\varphi(\omega,0),0)\)
\(()(1,1)(2,1)(3)(4,1)(5,1)(6)(7,1)(8,1)\) \(\psi(\omega^{\omega^{\Omega+\psi(\omega^{\omega^{\Omega+\psi(\omega^{\Omega 2})}})}})\) \(\varphi(\varphi(\zeta_0,0),0)\)
\(()(1,1)(2,1)(3,1)\) \(\psi(\omega^{\omega^{\Omega 2}})\) \(\mathrm{FSO} = \Gamma_0\)

\(\Gamma_0\) ~ \(\mathrm{SVO} = \varphi(1@\omega)\)

\(\varphi(1@\omega)\) ~ \(\mathrm{LVO} = \varphi(1@(1,0))\)

\(\varphi(1@(1,0))\) ~ \(\mathrm{BHO} = \psi(\Omega_2)\)

\(\psi(\Omega_2)\) ~ \(\mathrm{BO} = \psi(\Omega_\omega)\)

To be continued …